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Communicated by V. Vento

Abstract. A novel technique to probe the resonant structure of a partial-wave amplitude is proposed and
applied to data on photoproduction of baryon resonances.

PACS. 11.80.Et Partial-wave analysis – 13.30.-a Decays of baryons – 13.60.Le Meson production –
14.20.Gk Baryon resonances with S = 0

1 Introduction

The quest for a better understanding of the high-mass
spectrum of baryon resonances and the search for miss-
ing resonances are the driving forces behind the inten-
sive studies of photoproduction reactions at several facil-
ities like ELSA (Bonn), GRAAL (Grenoble), JLab (New-
port News), MAMI (Mainz), and SPring-8 (Hyogo). The
mechanisms which confine quarks are not well understood;
the high-mass baryon excitation spectrum seems to be
the best place to study quark-quark interactions in the
confinement region. However, data on high-mass baryon
resonances are scarce. The leading N∗ resonances with
J = L+1/2 are known for orbital angular momenta L ≤ 6.
In quark models, many more states are predicted in all
partial waves [1–3] which have not been identified. It is,
however, difficult to imagine that all the predicted states
are realized as individual resonances with specified prop-
erties. Possibly, the number of states is reduced by diquark
effects [4] but it is unclear how diquark excitations could
be frozen. Perhaps, only quark-diquark excitations can be
reached in π or photo-produced reactions [5]. Even more
exciting, a phase transition may take place in which chiral
symmetry is restored [6] (see, however, [7]).

In two previous papers we reported results of a com-
bined analysis of photoproduction experiments with πN,
ηN, KΛ, and KΣ final states [8]. The data included CB-
ELSA π0 and η photoproduction data [9,10], the Mainz-
TAPS data [11] on η photoproduction, beam-asymmetry
measurements of π0 and η [12–14], data on γp→ nπ+ [15]
and from the compilation of the SAID database [13]. Si-
multaneously data on photoproduction of γp→ K+Λ and

a e-mail: klempt@hiskp.uni-bonn.de

γp → K+Σ0 from SAPHIR [16,17], CLAS [18,19], and
LEPS [20] were used in the analysis. The formalism used
to describe the data is documented in [21]. It uses Breit-
Wigner amplitudes (or K matrices) to describe resonant
contributions, Reggeised amplitudes for t-channel exchan-
ges and includes amplitudes for u-channel exchanges and
Born amplitudes.

A good overall fit was achieved; table 1 summarizes
the data used and the χ2 with which the data were descri-
bed in the final fit. The fits minimized a pseudo-chisquare
function

χ2
tot =

∑
wiχ

2
i∑

wiNi

∑
Ni, (1)

where the Ni are given as Ndata (per channel) in the sec-
ond column and the weights in the fifth column of table 1.

The fit identified contributions from 14N∗ and 7∆∗

resonances, 4 of them were new, N(1840)P11, N(1870)
D13, N(2070)D15 and, with weaker evidence, N(2170)D13.
These resonances led to a significant improvement in χ2

for at least two of the reactions and this was the criterium
for us to postulate their existence. But further confirma-
tion for all these resonances is certainly needed.

Clearly, this procedure is not fully satisfactory. In
an ideal world, a “complete experiment” would be car-
ried out providing data from many independent polar-
ization and double-polarization measurements to allow
for a model-independent multipole analysis of single-
meson (and multi-meson) photoproduction. The informa-
tion should then be used to determine amplitudes for each
partial wave from which, in a later stage, background con-
tributions and pole positions of contributing resonances
could be determined. In practice, experimental limitations
(with a finite number of data points, limited statistics, in-
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Table 1. Data used in the partial-wave analysis, χ2 contribu-
tions and fitting weights.

Observable Ndata χ2 χ2/Ndata Weight Ref.

σ(γp→ ΛK+) 720 804 1.12 4 [16]

σ(γp→ ΛK+) 770 1282 1.67 2 [18]

P(γp→ ΛK+) 202 374 1.85 1 [18]

Σ(γp→ ΛK+) 45 62 1.42 15 [20]

σ(γp→ Σ0K+) 660 834 1.27 1 [16]

σ(γp→ Σ0K+) 782 2446 3.13 1 [18]

P(γp→ Σ0K+) 95 166 1.76 1 [18]

Σ(γp→ Σ0K+) 45 20 0.46 35 [20]

σ(γp→ Σ+K0) 48 104 2.20 2 [19]

σ(γp→ Σ+K0) 120 109 0.91 5 [17]

σ(γp→ pπ0) 1106 1654 1.50 8 [9]

σ(γp→ pπ0) 861 2354 2.74 3.5 [12]

Σ(γp→ pπ0) 469 1606 3.43 2 [12]

Σ(γp→ pπ0) 593 1702 2.87 2 [13]

σ(γp→ nπ+) 1583 4524 2.86 1 [15]

σ(γp→ pη) 667 608 0.91 35 [10]

σ(γp→ pη) 100 158 1.60 7 [11]

Σ(γp→ pη) 51 114 2.27 10 [14]

Σ(γp→ pη) 100 174 1.75 10 [12]

complete information on polarization variables, etc.) make
this approach so far impossible, in particular, when large
orbital angular momenta are to be included. This ap-
proach abstains from using the analytic constraints pro-
vided by the S-matrix. Models, respecting carefully the
analytic constraints, have a much closer contact to the
physics we are aiming at. Polarization variables are then
exploited not to construct but to constrain amplitudes
used to describe the data.

A very important information carried by a scattering
amplitude is its phase. In this paper we suggest a tech-
nique how the phase motion of a resonance can be visual-
ized. The observation of a sizeable phase motion in a par-
tial wave using this technique demonstrates consistency of
the data with the observation of a resonance.

2 Phase motion of baryon resonances

2.1 The scanning technique

Figure 1 shows the basic idea of the new technique. The
Argand diagram in fig. 1a for the helicity 3/2 γp→ pπ D13

amplitude A
3

2 (determined in [8]) reveals a big circle due
to N(1520)D13. Its radius defines the product gγpgNπ/Γtot

(see eq. (2)). The high-mass region is shown enlarged in
fig. 1b. Three rather small epicycles are found by the fit
which would be hard to see when the elastic amplitude
is reconstructed from data. When the N(1520)D13 reso-
nance is described, the residual amplitude still exhibits

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2

D13 (πN)

a)  

Re A

Im
 A

1100

1526

-0.2

0

0.2

0.4

0.6

-1 -0.8 -0.6 -0.4 -0.2

D13 (πN)

b)  

Re A

Im
 A

1725

1875

2166

3000

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

D13 (KΣ)

c)  

Re A

Im
 A

1875

2166

1700
3000

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

1530

1700

1100

2500

Nη
KΛ

KΣ

S11(πN)

d)  

Re A

Im
 A

Fig. 1. a) Argand diagram for the γp → pπ D13 amplitude
with helicity 3/2 from [8]. Data were fitted with the sum of four
D13 multi-channel Breit-Wigner amplitudes. b) Enlarged view
of the high-mass region. c) The amplitude for γp→ ΣK reveals
contributions from higher-mass states. d) S11 from the SAID
data base [22]. The units in d) are correct, those in a),b),c)
have to be multiplied by 0.01.

loops due to the additional resonances. The higher-mass
D13 resonances have small photocouplings, N(1870)D13

also a small elastic width. The latter amplitude is better
seen in γp → ΣK, see fig. 1c where N(1870)D13 provides
a significant contribution. A simultaneous search for D13

resonances in several final states will identify the most sig-
nificant phase motion. For isobars with small or without
resonant structure, the coupling will be fitted to a small
value or to zero.

A more difficult example is given by the S11 partial
waves. The Argand diagram in fig. 1d shows the elastic
scattering amplitude from the SAID fit to the model-
independent partial-wave analysis [22]. It presents —as
far as we know— the worst case: the N(1535)S11 and
N(1650)S11 resonances have strong couplings to Nη, ΛK
and ΣK channels which open in the central parts of the
resonances. No angular momentum barrier prevents the
decays, hence inelasticities lead to sharp variations of the
amplitudes. At the opening of new channels, the curva-
ture changes rapidly which may lead to wrong claims of
additional resonances. Such a behavior is not expected at
high masses, above 1.8GeV; many decay modes are open
and the opening of an additional channel has less signifi-
cant consequences. Also, additional channels which open
in this mass range like ∆(1232)ω or N(1680)F15π have a
soft threshold behavior, and sudden changes of the phase
are unlikely.
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In the isobar model fit presented in [8] most resonances
(with mass M) were described by Breit-Wigner ampli-
tudes with mass-dependent widths Γtot(s) where gγN (s)
and g(s) define the couplings of the resonance to the initial
and the final state at s =M 2

γN .

A =
gγN (s)g(s)eiϕ

M2 − s− i MΓtot(s)
. (2)

In a quark model without hadronic rescattering taken into
account, the phases ϕ are expected to vanish. Rescattering
effects may however lead to non-zero phases. The phases
are therefore allowed to deviate from zero in fits to mimic
rescattering effects. Possible changes of the moduli are ab-
sorbed in the coupling constants. In πN scattering, both
coupling constants would be given by the πN coupling con-
stant gπN of the resonance. Due to the smallness of gγN ,
the amplitude does not follow a unitarity circle. However,
as long as no important new thresholds open in close vicin-
ity of the resonance, the amplitude carries the full phase
motion of a resonance. The phase can be determined by
interference with other amplitudes. The initial and final
state are defined experimentally; a large number of ampli-
tudes contribute. Most of these amplitudes interfere with
the resonant amplitude under study. When the phase of
the resonance is determined relative to another fixed am-
plitude, then the phase motion should become visible.

Figure 2 shows the squared amplitude and the phase of
a model N(1520)D13 resonance. Its mass is 1520MeV, its
width 120MeV, it is supposed to couple with 50% to Nπ
and with 50% to Nππ. A fit using a simple one-channel
Breit-Wigner amplitude of fixed width will optimize the
mass of the resonance and the overall phase. If a wrong
mass is enforced by the fit, the fit quality (in terms of
χ2) decreases, the amplitude decreases but the fit can be
improved by adding an overall phase shift δϕ as to repro-
duce the phase of the resonance where the overlap of true
resonance and shifted resonance is large (see fig. 2). Far
below (above) the peak position, the phase of the physi-

M2

A2

M2

Fig. 2. Squared amplitude (left) and phase (right) of a model
N(1520)D13 resonance according to eq. (2) (solid line). If the
mass of the N(1520)D13 resonance is forced to be 1580MeV,
the fit will have a larger χ2 and will return a smaller amplitude
and a shifted phase (dashed line). The phase motions of the
original resonance and of the shifted resonance can be made
to agree in the mass region of largest intensity by adding a
constant phase shift to the shifted resonance (dotted line).

cal amplitude is close to zero (180◦). If we test the ampli-
tude with an artificial resonance peaking far below (above)
the peak position of the physical amplitude, the artificial
Breit-Wigner has not only a wrong amplitude but also a
wrong phase. This can be compensated by adding a phase
of −90◦ (+90◦). When the resonance is stepped through in
a mass scan, the added phase changes continuously from
−90◦ to 90◦. The mass scan can be simulated by using
—instead of the data— a theoretical Breit-Wigner ampli-
tude with parameters as derived in the fit. We call the
resulting phase the simulated phase motion.

This technique to visualize the phase motion of
hadronic resonances was first tested in the PhD Thesis
of B. Pick [23] to explore the spectrum of ρ radial excita-
tions in their ωπ decay mode. Data of the Crystal Barrel
Collaboration on the reaction p̄n → ωπ−π0 were used in
that analysis.

2.2 The baryon phase motion from Breit-Wigner scans

We test these ideas by a discussion of the N(1680)F15

phase motion. This resonance couples strongly to Nγ and
it is isolated, the next resonance in the F15 partial wave
being expected to have a mass of about 2GeV.

The full data set described above is fitted, all masses,
widths and coupling constants are allowed to vary freely.
The fit converges with χ2 values as given in table 1. We
now change the N(1680)F15 mass to preselected values
keeping its width fixed. All other parameters can change
again in a new fit. The χ2

tot of the fit deteriorates, when the
N(1680)F15 mass is changed in steps. The change in χ2

tot

as a function of the imposed N(1680)F15 mass is plotted
in fig. 3a. A clear minimum is seen which determines the
best N(1680)D13 parameters for those data. The phase ϕ
resulting from the fit is shown in fig. 3b and compared
to the expected phase motion. The change in the overall
phase across the resonance is about 150◦ and reasonably
close to the simulated phase motion. The errors in the fits,
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Fig. 3. a) Change in fit quality ∆χ2
tot as a function of the im-

posed mass of the N(1680)F15 resonance. The minimum cor-
responds to the best solution with χ2’s as given in table 1.
b) The phase ϕ adjusts itself to map the phase motion of the
N(1520)D13 resonance. The phases determined by the fit are
given as data points; they are compared to the simulated phase
motion (see text) represented by the solid line.
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±10◦, represent an educated guess. The statistical errors
are always below 1◦ but they are highly correlated; the
same data are used for all fits.

One could argue that the phase variation is a bias of
the fit procedure. A local minimum was reached in the
final fit which included the Breit-Wigner amplitude. Re-
placing this amplitude by another similar amplitude may
lead automatically to the expected phase variation. This
argument may be true in some cases but proved to be
wrong in at least this case: the technique was also ap-
plied to study the reaction p̄p → 2π+2π−η. The likeli-
hood fit identifies two resonances, η(1405) and η(1475),
both decaying to the final state via ση and a0(980)π.
Mass and widths of these two resonances were deter-
mined to M = (1407 ± 5)MeV, Γ = (57 ± 9)MeV and
M = (1490 ± 25, Γ = 80 ± 25) MeV, respectively. Thus
the two resonances are sufficiently separated to expect at
least partly separated phase motions. However, the phase
of the π+π−η pseudoscalar partial wave changed by only
180◦ in the mass range from 1300 to 1500MeV [24] (and
not by more than 300◦ as one should expect if η(1405)
and η(1475) would be two independent particles [25]). At
least in this case, the phase motion gives an answer which
is different from the conclusion drawn by likelihood fitting.

We test the technique in three applications discussed
in some detail below. First, we reduce the model space to
an absolute minimum. Second we replace theK-matrix for
the two S11 amplitudes by two multi-channel Breit-Wigner
amplitudes. And then we test the N(1520)D13 resonance
which makes a very large contribution to the γp → pπ0

total cross-section.

The minimal model

We reduce the model space to a few components only, and
restrict to amplitudes representing the 3 resonance regions
by ∆(1232), N(1520)D13 and N(1680)F15, and to t- and
u-channel exchange amplitudes to take into account the
background. This test is intended to examine if the phase
motion is picked up correctly even in the case of an incom-
plete model. The χ2 of the fit is now 132.5 · 103 instead of
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Fig. 4. ∆χ2
tot as a function of the imposed N(1680)F15 mass

and its phase ϕ in a minimal model with very few amplitudes.
Apart from t- and u-channel exchange amplitudes, only three
resonances are used to describe the data, ∆(1232), N(1520)D13

and the F15 wave with variable mass.

12.5 · 103 for the best fit. Obviously the fit describes only
the gross features of the data. Nevertheless, a clear χ2

minimum and a strong phase motion is observed in fig. 4,
both at the expected mass. The phase motion is stronger
than predicted. Of course, we cannot assign minimum and
phase motion to N(1680)F15 production only; other res-
onances in the third resonance region may contribute as
well.

The two S11 resonances

As a next step, we fit the S11 wave by replacing
the K-matrix by two multi-channel Breit-Wigner ampli-
tudes. The N(1535)S11 is used with free parameters, the
N(1650)S11 mass is scanned. The results are shown in
fig. 5. Even under these unfavorable circumstances, with
thresholds of two channels strongly coupling to the S11

wave, the expected phase motion is clearly observed.

The D13 resonances

We expected also a clear phase motion for the D13 par-
tial wave but these expectations are only partly met as
demonstrated in fig. 6. The region of the most rapid phase
motion is found ∼ 70MeV above its nominal mass. This is

0

0.2

0.4

0.6

0.8

1550 1590 1630 1670 1710 1750

M [MeV]

∆ 
χ2

×103

S11

-100

-80

-60

-40

-20

0

20

40

60

1550 1590 1630 1670 1710 1750

M [MeV]

[d
eg

]

S11

Fig. 5. ∆χ2
tot as a function of the imposed N(1650)S11 mass

and its phase ϕ. See the caption of fig. 3 for further details.
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a problem intrinsic in this technique if strongly contribut-
ing resonances are investigated. When a wrong mass of a
strong resonance is enforced, the χ2 changes very signifi-
cantly. A new fit minimum can then be found which is no
longer similar to the best solution. For a large mismatch
between the imposed and true mass of the resonance, the
fit is hence no longer capable to reproduce the phase ac-
curately. The technique is thus best suited for resonances
with moderate contributions to the data.

2.3 The newly proposed resonances

We next test the resonant behavior of the four newly pro-
posed resonances, N(1840)P11, N(1870)D13, N(2070) D15

and N(2170)D13. The results are presented in fig. 7. In
all cases, the phase variation exceeds 120◦ and follows the
simulated phase motion.

We now comment on the individual graphs in fig. 7.
The N(1840)P11 exhibits, like the N(1680)F15 resonance,
a nearly ideal case: there is a clear χ2

tot minimum and
the observed N(1840)P11 phase resonance follows almost
exactly the simulated phase motion. The same statement
can be made for the N(2070)D15. The D13 resonances are
much more difficult. There are four of them, and in the
mass scan interfering Breit-Wigner amplitudes are offered
to the fit, which start to overlap strongly when the scanned
mass approaches one of the neighboring D13 resonances.
This leads to instabilities in the fit. The minimum of the
N(1870)D13 resonance is very asymmetric and the mass is
difficult to determine from this plot. Here it is necessary
to recall that the N(1870)D13 parameters were determined
from a N(1870)D13 χ2

tot scan of the fit to the ΛK+ and
ΣK data, where a clear minimum evolved. The overall fit
is not necessarily the optimal choice to determine param-
eters of a resonance with strong couplings to a rare decay
mode. We interprete the χ2

tot plot in fig. 7 as evidence
that the N(1870)D13 starts to interfere with N(1700)D13

on the low-mass side and with N(2170)D13 on the high-
mass side. Likewise, the overall χ2

tot scan (summed over
all data in table 1) in fig. 7 does not give a reliable mea-
sure of the presence of N(2170)D13. But the phase motion
is not strongly distorted by these problems and seems to
provide stronger evidence for the existence of the two new
D13 resonances than the χ2

tot distributions.
Next we explore if the technique proposed here is sen-

sitive to the quantum numbers of a resonance. We de-
scribe N(2070)D15 with spin (7/2)−. The χ2

tot distribution
and the phase motion resulting from this hypothesis are
shown in fig. 8. The χ2

tot as a function of the assumed G17

mass exhibits a double structure, one of the minima is in-
compatible with the mass deduced from the phase motion
while the phase has not changed significantly. The likeli-
hood hardly discriminates the two solutions yielding dif-
ferent mass values. The phase motion certainly supports
only one solution. Both solutions give a reasonable like-
lihood even though the angular momentum J is wrong.
In this case (and other cases considered), a correct phase
motion is obviously a stronger indicator for the resonance
parameters than the angular distribution.
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for further details.
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M2

A2

Fig. 9. In the slice technique to determine the phase motion, a
baryon resonance is described by a Breit-Wigner amplitude. In
a mass slice, the amplitude can adopt an arbitrary additional
phase ϕ.

2.4 The slice technique

Finally, we try another technique to explore the phase mo-
tion of a resonance. The technique is explained in fig. 9.
A slice in the mass spectrum of a Breit-Wigner ampli-
tude is multiplied with exp (iϕ) where ϕ is an arbitrary
number. Otherwise, the Breit-Wigner amplitude remains
unchanged. (The fit may however change mass, width,
strength and overall phase.)

2.5 The baryon phase motion from mass slices

We first test the technique using the well-known
N(1520)D13 and N(1680)F15 resonances. The resulting
phases are shown in fig. 10.

The phases in the mass slices follow closely the ex-
pected Breit-Wigner phase motion, a mean deviation of
less than 3.5◦ is derived from fig. 10. Obviously, interfer-
ence effects play a very important role and define sharply
the phase of a baryon resonance. Next, we apply the slice
technique to the N(2070)D15. At the same time we test
the sensitivity of the slice technique to quantum numbers
of baryon resonances. The results are shown in fig. 11.
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Fig. 10. The phase difference ϕ between the Breit-Wigner
phase and the phase fitted in a mass slice as a function of the
mass. See the caption of fig. 9 for further explanations.

-30

-20

-10

0

10

20

30

1800 2000 2200

D15 σ= 3.21

M [MeV]

[d
eg

]

-30

-20

-10

0

10

20

30

1800 2000 2200

D15→G17 σ= 14.2

M [MeV]

[d
eg

]

-30

-20

-10

0

10

20

30

1800 2000 2200

D15→F17 σ= 8.59

M [MeV]

[d
eg

]

-30

-20

-10

0

10

20

30

1800 2000 2200

D15→S11 σ= 7.52

M [MeV]

[d
eg

]

Fig. 11. The additional phase ϕ (in degrees) which is allowed
to vary freely in a selected mass slice. The fit had assigned D15

quantum numbers to the resonance. The local phase deviates
only weakly (with a spread σ = 3.21◦) from the expected Breit-
Wigner phase. When the quantum numbers of the additional
resonance are changed the additional phase still follows a Breit-
Wigner amplitude but the mean deviations between expected
and fitted phase increase.

The D15 amplitude gives very good agreement between
fitted and expected phase over the full mass range (up-
per left plot). A replacement by a G17, F17 or S11 ampli-
tude introduces a much larger variance; obviously a D15

amplitude is best suited to describe the data while the
phases become less stable when other quantum numbers
are tested.

3 Summary and outlook

A novel technique is proposed to visualizes the phase mo-
tion of hadron resonances. The technique exploits the free-
dom of a fit to adjust the overall phase of a Breit-Wigner
amplitude independently of its mass. The phase motions
of the established resonances like N(1520)D13, N(1535)S11

and N(1680)F15 resonances are used to verify the va-
lidity of the technique. The newly proposed resonances,
N(1840) P11, N(1870)D13, N(2070)D15, and N(2170) D13,
are shown to exhibit the expected phase motion, too. Thus
the evidence for the existence of these states finds addi-
tional support.

The technique is not comparable with a determination
of the phase in a model-independent reconstruction of the
amplitude. But it offers the possibility of an important
consistency check: we have found at least one example in
which a likelihood fit gives strong support for two reso-
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nances while the phase scan gives only one. The method
seems to be stable against moderate model errors, wrong
hypotheses may result in inconsistencies between mass val-
ues found in a likelihood scan and in the deduced phase
motion. Further work is certainly needed to establish the
reliability and the limit of this new technique.

Are further polarization data still required to estab-
lish these resonances ? Certainly yes. New data on single-
and double-polarization variables will provide further con-
straints, lead to larger χ2

tot differences when resonances are
introduced and will hopefully uncover the existence of fur-
ther baryon resonances with weaker couplings to the γp
initial state.
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